Open-Source Large Language Models in Radiology:

A Review and Tutorial for Practical Research and Clinical Deployment

Savage et al. Radiology 2025

Areview

By Zineb El yamani August 11, 2025

Performance

Customizability

Cost

Licensing / innovation

Data security

Safety

Open-source:

you own the model

Proprietary:

Always under platform control

Risk of workflow disruption if a model version is deprecated

Open-source:

Smaller models

No API costs (only hardware and maintenance expenses)

Proprietary:

Large parameter counts

Pay-per-token for every API request

Open-source:

Encourages institutional and entrepreneurial innovation.

Proprietary:

Some platforms allow revenue sharing, but always within the company's ecosystem.

Open-source

avoids sending sensitive data to third parties.

Security depends on local IT infrastructure, which may be weaker than big cloud providers.

Data security

Proprietary

Cloud vendors often have advanced, **HIPAA-compliant** security.

Open-source

Less consistent testing for harmful outputs.

Developers often have fewer resources for adversarial robustness testing (prompt injection defenses).

Proprietary

Large-scale safety evaluation (red teaming, multiple safeguard layers).

Better resilience to adversarial prompts.

Performance

Customizability

Cost

Licensing /innovation

Data security

Safety

I am a radiologist, how can I implement an open source LLM?

Step 1: Choose a Model

Further are needed!!

-complex multistep instructions
-Use case specific metrics
-Depend whether we consider
end point to be fully automated
or collaborative

RaLEs

AWQ = Activation-aware Weight Quantization, GGUF = GPT-Generated Unified Format, GPTQ = Post-Training Quantization

OpenCompass

Proprietary and

open-source LLMs

Chatbot Arena

Proprietary and

open-source LLMs

Performance on Benchmarks

Performance can be approximated

using public leaderboards

Troubleshooting Performance issues

Prompt engineering

Retrieval-augmented Generation

Fine-tuning

Problem:

LLMs may exhibit deficiencies in complex reasoning, defined as low performance on tasks that require **multistep reasoning** (eg, generating a differential diagnosis)

Common techniques:

- → <u>Chain-of-Thought (CoT)</u>: Tell the model to "think step by step," so it breaks reasoning into intermediate steps.
- Reflexion: The model simulates an *evaluator* that critiques its own first answer, then revises it based on that feedback.
- → Few-shot prompting: Give a few solved examples in the prompt before the real question.

Retrieval-augmented Generation

Problem:

LLMs can have an **insufficient** knowledge base that can potentially lead to hallucinations. (eg, constantly changing medical guidelines)

Solution:

→ Supplement the input prompt with information from other data source without the need for fine-tuning.

Fine-tuning

Problem:

LLMs can exhibit **poor performance** in instruction following.

Solution:

Retrain the model with additional domain-specific data so it internalizes new knowledge or skills.

Fine-tuning

Training methods: depend on the complexity and breadth of the desired task

<u>SFT</u> (Supervised Fine-Tuning): Train on prompt-response pairs.

Good for well-defined tasks with a narrow range of correct answers

<u>RLHF</u> (Reinforcement Learning from Human Feedback): Humans rank outputs, a reward model learns preferences, and the LLM adapts to maximize that reward.

DPO (Direct Preference Optimization): Like RLHF but skips the reward model

Simpler and needs fewer examples.

Fine-tuning

Training scale: depend on the reasoning ability required and the computational resources of the user

<u>Full fine-tune</u>: Adjust all model parameters (best performance but expensive).

LoRA (Low-Rank Adaptation): Only adjust small parameter subsets (much cheaper in memory and time).

QLoRA: LoRA + quantized LLM (even lower resource usage).

I am a radiologist, how can I implement an open source LLM?

Define the Problem First

- → What is the exact use case? Clinical task? Research? Administrative?
- → What's the measurable outcome? Accuracy, speed, cost savings, reduced workload, patient safety?

Regulatory & Risk Context

- → Will this be used in clinical care or just for research?
- → Is a human-in-the-loop required?
- → Does the output have direct patient impact?
- → What are the privacy laws that apply (HIPAA, ...)?
- → What's the risk if the model hallucinates or makes an error?
- → Implement post-deployment surveillance for safety.

Cost & Resource Planning

Do you need the best performance immediately, with minimal setup?

→ Proprietary models: token-based API costs (input + output).

Do you need full control over the model?

→ Open-source models: hardware cost (GPUs, cloud compute), IT staff time, energy consumption.

Do you plan for scaling?

→ more users = more compute or higher API spend.

